Huyue Chen +(86)-195-1246-1051 | huyue chen@situ.edu.cn Shanghai Jiao Tong University, Shanghai 200240, China

Personal Website: http://www.huvuechen.com/

RESEARCH INTERESTS

- 1. Physical Intelligence, Biomedical Micro-robotics.
- Mechanical Metamaterials, Unconventional Computing. 2.

EDUCATION

China Scholarship Council fellowship	Sept. 2023 – June 2025
Shanghai Jiao Tong University, Shanghai, China (Ph. D student)	Sept. 2020 – Expected in 2025
Design, manufacturing & systems, Mechanical Engineering, English Program	
Dalian Maritime University, Liaoning, China (Bachelor)	Sept. 2016 – Jul. 2020
Mechanical Engineering, English Program, pilot class	

PROJECT EXPERIENCE

Soft Robotics

1. Direct ink writing of pure PDMS for soft 3D microstructures and tactile sensors

21st IEEE Transducers, 16th IEEE NEMS, oral presentation

100um

1mm

2. Self-vectoring electromagnetic soft robots with high operational dimensionality

- Fabricate soft 3D microstructures based on direct ink writing (DIW) using pure PDMS.
- Show that the printing resolution of pure PDMS can approach 100 µm by combining optimized parameters.
- Display three all-printed tactile pressure sensors with piezoresistive, capacitive, and triboelectric mechanisms.

- Nature Communications, 14, 182
 - Propose self-vectoring electromagnetic soft robots to instantly synthesizing the interior magnetic vectors.
 - Reveal rapid 3D shape morphing, multimodal locomotion, fast (re)programmability, and selective actuation.
 - Realize high-dimensional unterhered operations with fewer actuators and control signals.

60 50 40

Oct. 2020 – June 2021

Mar. 2021 - Jan. 2023

Metamaterials

3. A wave-confining metasphere beamforming acoustic sensor for superior human-machine voice interaction

Science Advances, 8, eadc9230

Apr. 2021 – Sept. 2022

- Present a wave-confining metasphere (acoustic metamaterial sphere) beamforming acoustic sensor.
- Achieve the high SNR (72 dB) and sensitivity (-26.3 dBV) simultaneously, with daily frequencies (0-1500 Hz).
- Demonstrate audio cloning, source localization and speech recognition in a noisy environment (> 80 dB).

4. Mechanical transistors for logic-with-memory computing

Submitted, arXiv:2306.02352.

June 2021 – Present

- Propose a mechanical transistor to modularly form various combinational and sequential circuits.
- Establish a universal processing core comprising an arithmetic unit and a register in a physical network.
- Demonstrate the self-unfolding of aerospace solar sails with environmental thermal inputs.

PUBLICATIONS

- 1. H. Chen, W. Zhang, *et al.* Direct ink writing of pure PDMS for soft 3D microstructures and tactile sensors. *21st International Conference on Solid-State Sensors, Actuators and Microsystems (IEEE Transducers*), 521-528 (2021).
- 2. H. Chen, C. Song, et al. Mechanical transistors for logic-with-memory computing. arXiv:2306.02352 (2023).
- W. Li[†], H. Chen[†], *et al.* Self-vectoring electromagnetic soft robots with high operational dimensionality. *Nat. Commun.* 14, 182 (2023). [Editor's Highlight in *Nature Communications*]
- K. Ma[†], H. Chen[†], *et al.* A wave-confining metasphere beamforming acoustic sensor for superior humanmachine voice interaction. *Sci. Adv.*, 8, eadc9023 (2022). [Reported by *ScienceAAAS*]
 - †: These authors contributed equally to the current work.
- 5. Q. Ding, H. Chen, et al. IEEE Sens. J. 11552-11561, (2022).
- Q. Ding, H. Chen, et al. 16th International Conference on Nano/Micro Engineered and Molecular Systems (IEEE NEMS), 1297-1300 (2021).

TOEFL: 105 (Reading: 29, Listening: 28, Speaking: 21, Writing: 27)

2022-2024